Analytical SFC System

Performance Innovation Reliability

The SFC-4000 Analytical SFC System provides flexible configurations for any type of separation. The SFC-4000 can be set-up for use as a single column/single detector system or as a multicolumn/multi-detector system for rapid method development. ChromNAV is an easy to use data system with a user-friendly interface and comprehensive automated data analysis. The ChromNAV Method Scouting add-in program is used for fast column and solvent screening.

Table of contents

System

SFC Advantage	4
Performance	5
SFC	6
SFC-MS	7
Parallel SFC	8
Software	
ChromNAV	9
Method Development	10
Specifications	11

SFC Advantage

Supercritical Fluid Chromatography requires a supercritical fluid (most commonly CO_2) as the primary component of the mobile phase. The intrinsic characteristics of low viscosity and high diffusivity of supercritical CO_2 makes SFC faster and more efficient than traditional HPLC. SFC achieves faster flow rates with shorter analysis times without the requirement for higher pressures like UHPLC. As in reverse phase HPLC, an alcoholic co-solvent or modifier can be combined with the CO_2 to increase the

solvation strength and can be used isocratically or as a gradient. The components in a SFC system are the same that can be found in any HPLC system, with the addition of a high pressure flow cell for the detector and a back pressure regulator (BPR). The BPR applies a carefully controlled pressure to the outlet of the column to maintain accurate supercritical conditions, and is an integral part of the performance of the system.

Fraction Collector

- 1. Faster analysis times
- 2. Higher selectivity with longer and smaller particle columns
- 3. Reduction in total solvent consumption
- 4. More environmentally-friendly solvents
 - a. CO₂ replaces hexane or heptane
 - b. Alcohols typically used as co-solvents
- 5. Longer column lifetimes
- 6. Orthogonal to HPLC methods
- 7. Easy removal of mobile phase after preparative fractionation
- 8. Reduction in waste disposal

Performance

Excellent isocratic and gradient retention time reproducibility ≤ 0.1% RSD

Extremely stable and accurate flow control and back pressure

PDA provides all wavelengths, peak purity, spectra searching and 3D plots

Injection reproducibility ≤ 0.5% RSD (20 overlaid injections)

Outstanding reliability for worry-free operation injection after injection

World's first and only FP detector for SFC providing sensitivity up to 2-3 orders of magnitude higher than UV

SFC

The CO_2 pump includes peltier cooling (with pumphead temperature monitoring) to control the density of the mobile phase for accurate CO_2 flow with excellent retention time reproducibility.

Automatic, shut-off valves close the CO_2 inlet and outlet (and co-solvent pump) to isolate the pumps for quick and simple priming when flow is not pumping.

- The autosampler has a sample capacity of up to 180 – 2mL samples with both full-loop and variable-loop injection up to 100µL. For increasing throughput, towards the end of the current separation, the next sample is pre-loaded into the loop to eliminate the loading time between injections.
- A variety of column ovens are available for single or multiple columns with options for built-in column selection valves to ensure temperature equilibration for both columns and valves to minimize band broadening in the peaks.
- The patented back pressure regulator has unmatched pressure regulation precision and accuracy with an extremely low noise baseline and excellent retention time reproducibility.

SFC-MS

Control

Auto-Tuning and Performance Checks can be made easily and routinely.

Detectors

UV-4070/4075 UV-Visible Detector Wavelength ranges: UV-4070: 190-900nm UV-4075: 190-600nm

MD-4010/4015/4017 PDA Detector Wavelength ranges: MD-4010: 190-900nm MD-4015: 200-600nm MD-4017: 200-400nm

CD-4095 Circular Dichroism Detector Wavelength range: 220-460nm

FP-4020/4025 Fluorescence Detector Wavelength range: 200-700nm (200-900nm optional)

The SFC-4000-MS combines all of the advantages of SFC with the selectivity and sensitivity of a mass spectrometer.

- The CMS single quadrapole mass-spectrometer is a perfect complement to SFC. As CO₂ passes out from the BPR it depressurizes and expands to a gas at a rate of 1:500, which assists with the nebulization at the ion source.
- Multiple source options include; ESI, APCI and ASAP, with positive/negative ion mode switching for the high range detection of M/Z up to 2000 AMU.
- The ChromNAV-MS add-in program includes full control and acquisition of the CMS, with auto-calibration and auto-tuning for easy optimization.

Data

ChromNAV-MS system control with convenient access to all MS data.

Explore the MS spectra, and extract ion chromatograms with just a few clicks.

Test No. 1942 Marsh Life Tim Experiment Help	+ 2015-09-20 14-1740								Altiz
me Pret Provet		2 kalanta 🗿 kapat 🔤	• Beckground Background	i Options Integrate	Pask Delete Pask Edit Label				0 0
Open file Barbane File	AC Options AM	• TE Base Peak Chromatopum	Analog InpubIIC Sepuls						
Open Options	Test, Mar, Split, B								
* New Tab	stands inc. m	Jan, 64/10, 1 Apr 2015 (6 22 16 17 20);							1
C feature	19		1129104		4215,1953				
Design Centers	1201		1		and the second				
Ride Chromatogram	-		12.00,2205		Δ				
Hele Spectrum	3			256	110 110-1214	417	5.00	510	117 F.
	march Chund								STRAFELLITIMAN
Tent_Mix_Split_Sham_S.do	The Market	304,6445,16429153833161730;							
	-72		10009-1474						
	4000		1						
	2000-		A						
	100	140		250	339	4.17	500	580	5.12 2.50 Wr.
	manufe Channel								STRAMATELLI IMAMM
	manute and all	Jule, 64 July, 1 day 2015 08 20 18 17 00.							H I I I I I I I I I I I I I I I I I I I
	south 1				100.00 196.5				
	4000								
	2000				1				
	100	10	(g ¹	256	330	417	5.00	510	542 7.61 W.
		nation - December							
	Test, Mar. Split, Gr								
	mark Series								**********************
	2	1974							
									1
	1.24		A	250	200		340	63	***

Parallel SFC

The Parallel SFC provides the highest throughput in column and solvent screening for chiral and achiral compounds.

- The system provides simultaneous elution on 4 or 5 columns for up to 5 times the throughput of traditional SFC.
- Up to 10 columns and 10 solvents will cover a wide range of column-solvent combinations to achieve the best pair.
- Single column-solvent optimization is then performed to obtain the best separation for scaling up to preparative purification.

Control

ChromNAV-MS system control with The screening sequence of up to 10 columns and 10 solvents can be setup in just a few clicks.

Data

The simultaneous elution view provides live evaluation of the separation.

allows for quick determination of the best column-solvent combination.

The screening results previewer

ChromNAV Software

Instrument Control

ChromNAV uses methods and sequences for quick and easy set-up of sample analysis. The autosampler sample pre-load feature eliminates the sample loading time between injections further increasing throughput of the system. The sequence includes peak integration, peak table, calibration and fully customizable reports for complete automation from sample analysis to report printing. Each component in the system is subject to performance monitoring and the information is recorded with the acquired data file together with the method for a complete history of operation.

Data Acquisition

Chromatograms can be monitored and acquired simultaneously from multiple detectors including; UV-visible, 3D PDA, fluorescence, CD, SIM, XIC, TIC and mass spectrum. The mass spectrum can also be analyzed after acquisition to identify unknown peaks. ChromNAV has many features for data analysis and processing, both automatically during the run and extensively post run. Raw data and peak calculation results can be exported automatically in several formats including CSV (for Microsoft Excel).

Method Development

					Chanr	101:			08	9					
100	NFIG	AS	PUMP1	PUMP2	OVEN1	PDA	CTRL	BPR1							
ump	#1:PU	J-4380													
	100	1						F 100		In	itial Condition Time	e Prog	am		
								E.			Initial Condition				
	80	1						- 80	7		Pump Mode		MPG-2		
								F	NPG-2 Gradient(%		Flow[mL/min]		3.000		
d th	60	1						F 60	2		Max. Press[MPa]		50.0		
Intensity		1						1	ada		Min. Press[MPa]		0.0		
	40 -	1						- 40	룡		Mixer Speed		Normal	-	
								÷	<u>e-</u>	4	Composition				
	20 -							20			Composition A[%]		60.0		
								F.o.			Composition B[%]		40.0		
		1									Solvent Name				
		0.0	2.0	4.0 Retenti	6.0 on Time[min]	8.	0 10	0.0		4	Valve/Event				
_	4.0	1									Valve		1	-	
Ē.	3.5									-	Valve Port Name				
É	3.0							_			Valve Port#1 Nam		Methanol		
How(mil./min)	2.5										Valve Port#2 Nam		Ethanol		
	2.0	.									Valve Port#3 Nam		IPA		
		0.0	2.0	4.0	6.0	8.	0 10	0.0			Valve Port#4 Nam		Methanol TEA		
				Retenti	on Time[min]						Valve Port#5 Nam		Ethanol TEA		
	Event1 -	-						-			Valve Port#6 Nam		IPA TEA		
	Event2 -	-						_			Valve Port#7 Nam				-
	Event3 -										Valve Port#8 Nam				
	Event4 -	L									Valve Port#9 Nam				
		0.0	2.0	4.0	6.0	8.	0 10	2.0			Valve Port#10 Nar	me			
				Retenti	on Time[min]	<i>u</i> .					Event#1				~

Solvent Selection

Solvent selection valve, built into the cosolvent pump (Options 1, 6 or 10). Solvents can be named in the method and are saved with the data.

Method Scouting

The method scouting module includes a workflow for building a simple sequence to screen up to 10 solvents and 10 columns without having to develop a method for each separation. At the end of a method scouting the optimal separation can be selected and a method is created ready for use.

Column Selection

Column selection valve, built into the column ovens (Options 1, 6 or 10). Columns can be named in the method and are saved with the data.

Chromatogram Selection

Up to 48 chromatograms can be previewed and compared together in a single view to identify and select the optimal combination of solvent and column for the separation.

Specifications

SFC System					
	CO ₂ Flow rate	0.5 - 10mL/min			
	Co-Solvent Flow Rate	0.5 - 10mL/min			
Pump	Flow Rate Accuracy	±1% or ± 2µl/min			
	Flow Rate Precision	0.05% RSD			
	Solvent Selection	10 solvents			
	Injection Volume Range	0.1 - 100 μL			
	Number of Samples	up to 180 (2mL vials)			
Automatica	Injection Accuracy	± 0.1% or less			
Autosampler	Injection Precision	0.25% RSD or less			
	Carryover	0.01% or less			
	Optional Autosampler Rack Temperature Control	4 - 40°C			
Column Oven	Column Temperature Range	Ambient -15°C - 90°C			
Column Oven	Column Selection	up to at least 10 columns			
	Maximum Pressure	500 bar			
Back Pressure Regulator	Pressure Display Accuracy	±5% or ±10 bar			
	Pressure Stability	±2% or ±2 bar			

UV-Visible and Circular Dichroism	UV-4070	UV-4075	CD-4095		
Wavelength Range	190 - 900 nm	190 - 600 nm	220 - 460 nm		
Noise Level	\pm 0.2 x 10 5 AU (at specifi	0.04 mdeg (at specified conditions)			
Drift	± 1 x 10 ⁻⁴ AU/h (at specifie At constant room ter	0.1 mdeg/h (at specified conditions) At constant room temperature			
Data Output	100 Hz				
Flow Cell	Temperature controlled, tapered, path length 10 mm Tapered cell, path length 20 m				

Photo Diode Array	MD-4010
Wavelength Range	190 - 900 nm
PDA Elements	1024 ch
Slit Width	1, 4, 8 nm
Data Acquisition Rate	
Flow Cell	

Fluorescence	FP-4020	FP-4025			
Light Source	Xenon short arc lamp				
Wavelength Range	200 - 700 nm, Option up to 900nm				
Sensitivity	Raman peak of water S/N > 2300	Raman peak of water S/N > 1400			
Data Output	100 Hz				
Temperature Control	OFF, ambient -10°C - 40°C	-			

Mass Spectrometer	CMS-S	CMS-L		
Ion Source	ESI, APCI & AS	GAP		
Mass Range	Up to 1200 m/z	Up to 2000 m/z		
Polarity	Positive and Negative switching in same analysis			
Sensitivity	100pg reserpine (FIA $-$ 5µL injection at 100µL/min S/N 100:1 (RMS) with SIM			
Acquisition Rate	10,000 m/z units/sec			
Accuracy	0.1 m/z units			
Stability	0.1 m/z over a 12 hour period (18-24°	C operating temperature)		

	MD-4015	MD-4017			
	200 - 600 nm	200 - 400 nm			
	51	12 ch			
	4 nm				
100 spe	ctra/sec	20 spectra/sec			
	Path length 10 mm				

JASCO INTERNATIONAL CO., LTD.

11-10, Myojin-cho 1-chome, Hachioji, Tokyo 192-0046, Japan Tel: +81-42-649-3247 Fax: +81-42-649-3518 http://www.jascoint.co.jp/english/ Australia, Hong Kong, India, Indonesia, Korea, Malaysia, New Zealand, Pakistan, Philippines, Russia, Singapore, Taiwan, Thailand, Vietnam

JASCO INCORPORATED

28600 Mary's Court, Easton, Maryland 21601, U.S.A. Tel: +1-410-822-1220 Fax: +1-410-822-7526 Web: www.jascoinc.com Argentina, Bolivia, Brazil, Canada, Chile, Colombia, Costa Rica, Guatemala, Mexico, Paraguay, Peru, Puerto Rico, United States of America, Uruguay, Venezuela

JASCO EUROPE S.R.L.

Via Luigi Cadorna 1, 23894 Cremella (LC), Italy Tel: +39-039-9215811 Fax: +39-039-9215835 Web: www.jascoeurope.com JASCO Deutschland www.jasco.de | JASCO UK www.jasco.co.uk | JASCO France www.jasco.fr JASCO Benelux www.jasco.nl | JASCO Spain www.jasco-spain.com Algeria, Austria, Belgium, Cyprus, Denmark, Egypt, Finland, France, Germany, Greece, Hungary, Iran, Iraq, Israel, Italy, Jordan, Kuwait, Lebanon, Luxembourg, Morocco, Netherlands, Norway, Poland, Portugal, Romania, Saudi Arabia, South Africa, Spain, Sweden Switzerland, Tunisia, Turkey, United Arab Emirates, United Kingdom, Yemen

JASCO China (Shanghai) Co., Ltd.

Room No.D, 10F, World Plaza, 855 Pudong South Road, Pudong New Area,chi Tel: +86-21-6888-7871 Fax: +86-21-6888-7879 http://www.jasco-global.com

designed and manufactured by ISO-9001- and ISO-14001-certified JASCO Corporation