

SweetSep[™] AEX200 a New Stationary Phase for Fast, High-Resolution Separation of Carbohydrates using HPAEC-PAD

Daniel Vetter¹, H.J. Brouwer¹, J.P. Chervet¹, C. Marvelous¹, T. Mulder¹, M. Eysberg^{1,2}, N.J. Reinhoud¹

Antec Scientific, Alphen a/d Rijn, The Netherlands; ²Antec Scientific USA, Boston, MA, USA

Introduction

High-Performance Anion Exchange Chromatography in combination with Pulsed Amperometric Detection (HPAEC-PAD) is the method of choice for the analysis of carbohydrates. It combines superior selectivity with sensitive detection down to femtomole levels without the need for derivatization or complicated sample preparation. A novel polymeric anion-exchange stationary phase SweetSep™ AEX200 has been developed. The stationary phase is based on a monodisperse 5 µm resin coated with quaternary amine functionalized nanoparticles. The high uniformity and monodispersity of the resin allow for rapid, high-resolution separations of carbohydrates. The size and exchange capacity of the latex nanoparticles was optimized to enable the analysis of a wide variety of carbohydrates samples ranging from monosaccharides present in food, plants and glycoproteins up to oligosaccharides such as FOS (fructo-oligosaccharides) and N-linked glycans. In this poster several methods for the analysis of carbohydrates are presented demonstrating the performance of a new column based on AEX200 resin.

Table 1. Specifications SweetSep [™] AEX200 column (pn 260.0010)					
Туре	Latex-coated pellicular resin				
Particle diameter	5 μm				
Material	ethylvinylbenzene-divinylbenzene copolymer				
Crosslinking (%)	80%				
Functionality	Quarternary amine groups				
Column dimensions	200 x 4 mm ID				
Ion Exchange Capacity	86 μeq per 4 x 200 mm column				
Organic solvent limit	0 - 100% of any common solvent (cleaning)				
Temperature limit	5 - 60°C (recommended 10 - 40°C)				
pH range	0 - 14				
Pressure rating	Max. 300 bar / 4500 psi				

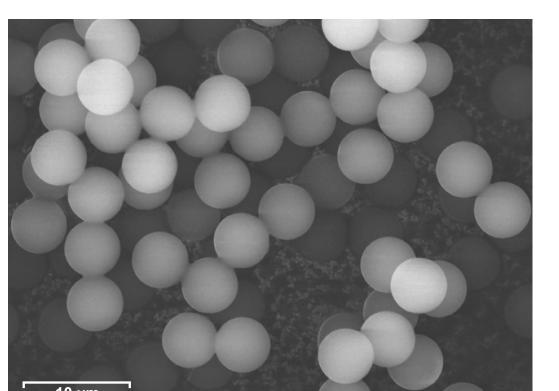


Figure 1. Scanning Electron Microscope (SEM) image of AEX200 resin. Magnification 1400 x, acceleration voltage 25 kV.

Instrumentation

Typical back pressure

The ALEXYS Carbohydrate Analyzer (Antec Scientific) is a dedicated metal-free HPAEC-PAD system consisting of:

140 bar (0.7 mL/min, 12 mM NaOH, 30°C)

- ET210 Eluent Tray, for sparging and blanketing of eluent with inert gas (N₂ or He).
- P6.1L quaternary LPG pump with integrated 4-ch degasser
- AS6.1L autosampler with sample cooling (down to 4°C)
 CT2.1 column thermostat (temperature range 5°C 85°C)
- DECADE Elite electrochemical detector with dedicated
- flow cells (SenCell[™] or FlexCell[™]) for carbohydrates

 Instrument control & acquisition by DataApex Clarity CDS or Thermo Scientific[™] Chromeleon[™] CDS

Figure 2. ALEXYS Carbohydrate Analyzer.

Results

Column performance

Compound	Tr (min)	k	N	Rs	Symmetry /tailing	HETP (μm)	h
Fucose	2.75	1.08	9427		1.34	21.2	4.2
Arabinose	4.39	2.33	12716	12.24	1.28	15.7	3.1
Galactose	5.19	2.93	10971	4.53	1.28	18.2	3.6
Glucose	5.69	3.31	8942	2.28	1.23	22.4	4.5
Sucrose	6.63	4.03	15601	4.17	1.16	12.8	2.6
Fructose	7.24	4.49	11589	2.534	1.50	17.3	3.5
Allolactose	10.84	7.21	16280	11.86	1.16	12.3	2.5
Lactose	11.67	7.84	13850	2.25	1.15	14.4	2.9
Lactulose	12.77	8.67	13530	2.64	1.28	14.8	3.0
Epilactose	14.58	10.05	16569	4.08	1.14	12.1	2.4

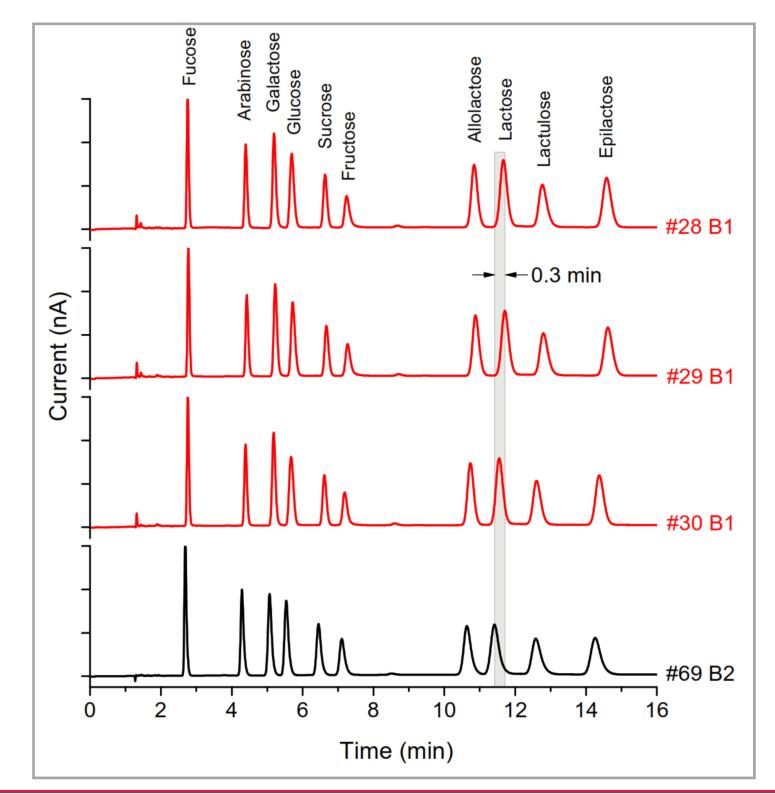


Figure 3. Column reproducibility data. **Red curves:** comparison of three 4 x 200 mm columns #28, #29 and #30 packed with the same batch of AEX200 resin (B1) and run under identical LC conditions. **Black curve** (bottom): a 4 x 200 mm column (#69) packed with a different batch of AEX200 resin (B2). The maximum difference in retention time for Lactose between the columns was 0.3 minutes in this case. LC conditions (QAR): $10 \mu L$ injection of a $10 \mu M$ standard of 10 sugars in DI water, flow rate 0.7 m L/min,

isocratic separation with 12 mM NaOH, T = 30°C.

Analysis of mono-, di - and trisaccharides

Neutral sugars and uronic acids in biomass hydrolysates

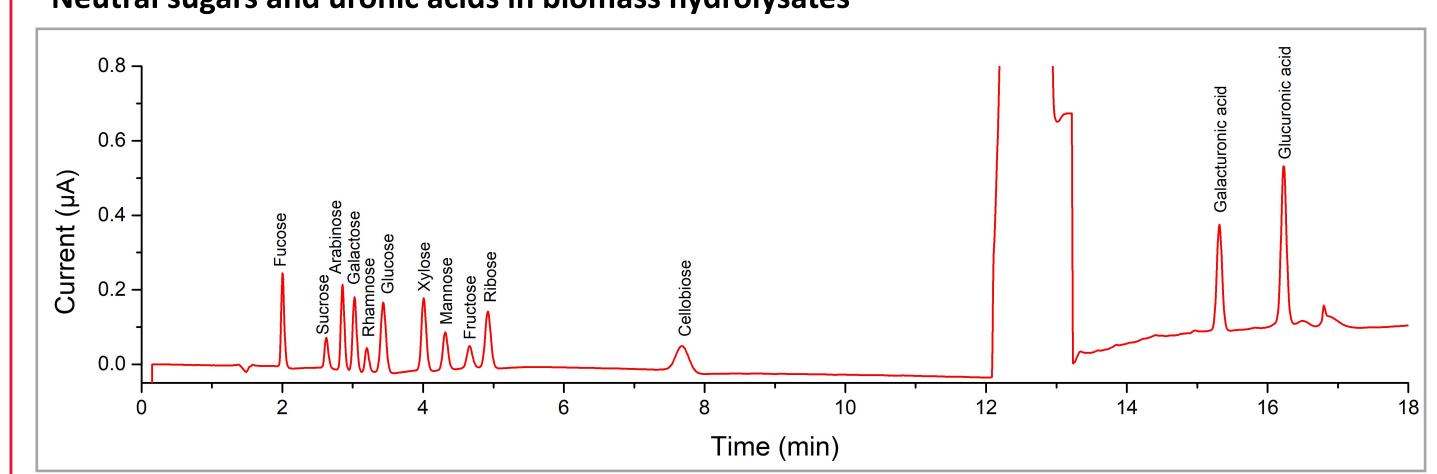
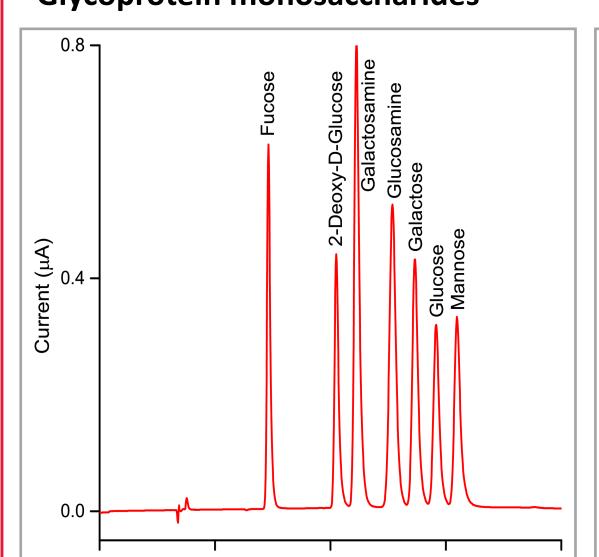



Figure 4. Separation of a 10 μ M standard mixture of 11 neutral sugars and 2 uronic acids typically present in biomass hydrolysates on a SweetSep[™] AEX 200 column, 4.0 mm ID × 200 mm. Step-gradient elution: 0 – 10 min 1 mM NaOH, 10 – 16 min 100 mM NaOH-100 mM NaOAc, 16 – 50 min 1 mM NaOH, 0.7 mL/min, 30°C. A 4-step potential waveform optimized for carbohydrates was used for detection at 45°C.

Glycoprotein monosaccharides

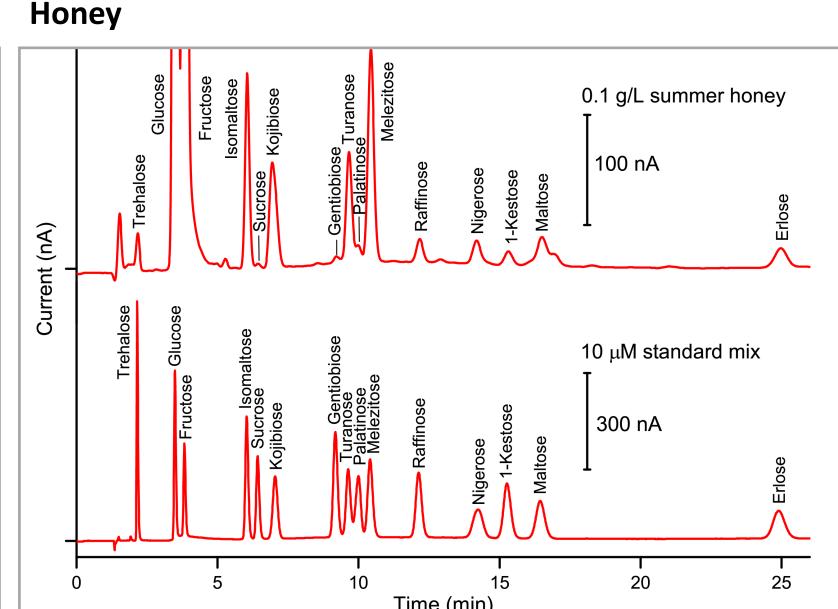
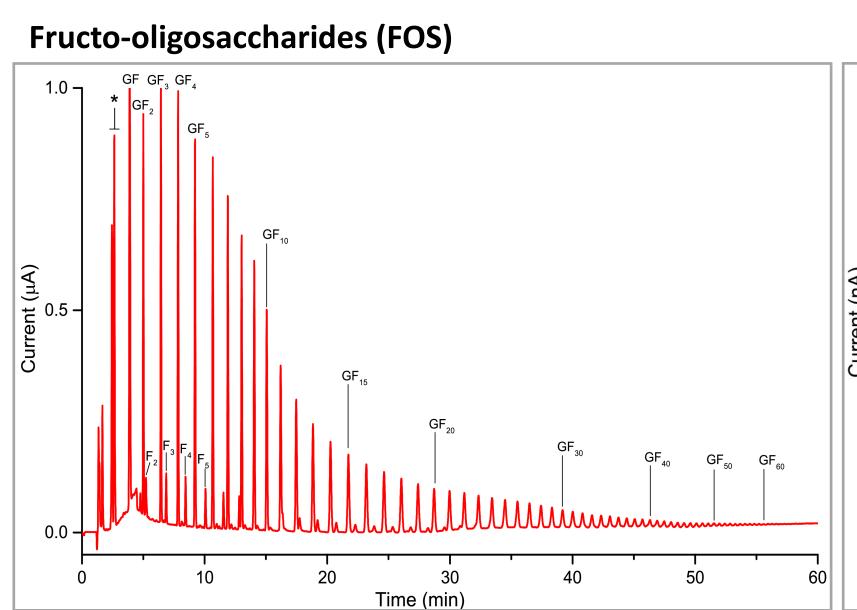



Figure 5. Separation of 10 μL injection of a 10 μM mixtures of glycoprotein monosaccharides on SweetSep™ AEX20 column, 4.0 mm ID × 200 mm. Isocratic elution: 17.5 mM NaOH, 0.7 mL/min, 30°C.

Figure 6. Analysis of honey on a SweetSep[™] AEX200 column, 4.0 mm ID × 200 mm. Top: 10 μ L injection of a 0.1 g/L Swiss summer honey sample. Bottom: 10 μ L injection of a 10 μ M standard of 15 sugars commonly found in honey. Isocratic elution: 68 mM NaOH, 0.7 mL/min, 20°C.

Analysis of oligosaccharides

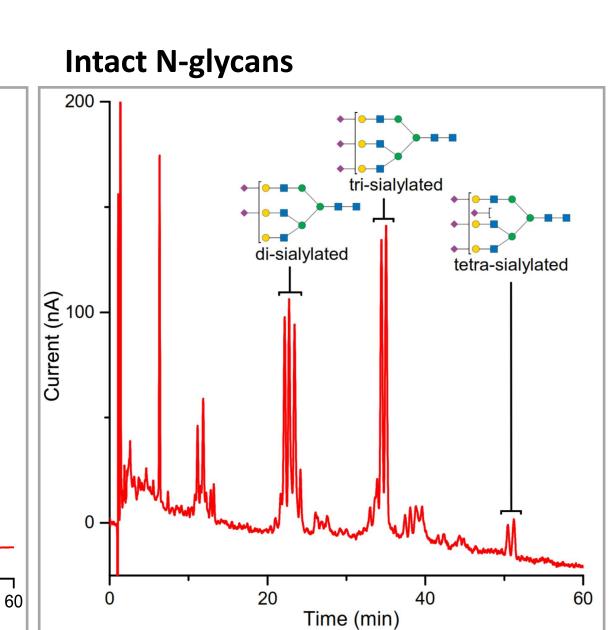


Figure 7. Gradient elution of 10 μ L injection of a 200 ppm inulin from chicory on a SweetSep[™] AEX200 column, 4.0 mm ID × 200 mm. Gradient elution: 0 min: 100 mM NaOH, 12 min: 100 mM NaOH + 180 mM NaOAc, 60 min: 100 mM NaOH + 450 mM NaOAc, 0.8 mL/min, 25°C.

Figure 8. Separation of N-glycans standard containing di— tri— and tetra-sialylated oligosaccharides on a SweetSep™ AEX 200 column, 4.0 mm ID × 200 mm. Gradient elution: 0 min: 100 mM NaOH + 6 mM NaOAc, 70 min: 100 mM NaOH + 190 mM

Conclusion

A new stationary phase based on highly monodisperse 5 µm particles coated with quaternary amine functionalized nanoparticles, **SweetSep™ AEX200**, has been developed which enables:

- Fast, high-resolution separation of carbohydrates at moderate column back pressures
- Analysis of carbohydrates over a high molecular weight range:
 from mono- to oligosaccharides with a high degree of polymerization
- Analysis of complex mixtures of carbohydrates with both ECD and MS detection (desalter required depending on the volatility of the buffer system used).
- Compatible with any HPAEC and suitable bioinert HPLC systems.

www.AntecScientific.com

Website