

**Application Note** 

No. 210TR0177-E

# **Secondary Structure Analysis of Proteins using FTIR**

### Introduction

Recently, it was reported that the identification of human DNA base sequence had been completed. Since base sequence was identified, it has been said that the studies of protein are going to increase. In the protein research, the studies of the function and structure are needed to be done concurrently. Therefore JASCO has developed new program, which can analyze the secondary structure of protein utilizing the peak of amido I in IR spectrum (hereinafter referred to as IR-SSE). In the conventional analysis of the secondary structure of protein using IR spectrum, deuterated water ( $D_2O$ ) was used for prevention against overlapping of the peaks of water ( $H_2O$ ) to amido I. However, there was a problem that deuterated water is much more expensive than common water and also difficult to use. IR-SSE has been so designed that the peak of water is subtracted automatically in order to analyze the secondary structure of protein using common water. The secondary structure had been analyzed from amido I peak using the curve fitting method, however, the current program enables the secondary structure analyses of protein by the method of principal-component regression (PCR) or partial least squares (PLS), which take 17 kinds of proteins whose secondary structure was known as standard data. The results of the analyses of 5 proteins using IR-SSE are shown.

#### Experimental

| Sample:                | 5 kinds of 5% (w/v) proteins (Lysozyme, Ig-G, Cyt-C, OVA, Pepsine), in Phosphate buffer (10mM |                    |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
|                        | pH 7.0) were prepared.                                                                        |                    |  |  |  |  |  |
| Measurement method:    | Transmittance measurement (10 mL samples were sandwiched between 2 $CaF_2$ plate.)            |                    |  |  |  |  |  |
| Instrument:            | FTIR-680                                                                                      |                    |  |  |  |  |  |
| Measurement condition: | Accumulations:                                                                                | 32 times           |  |  |  |  |  |
|                        | Resolution:                                                                                   | 4 cm <sup>-1</sup> |  |  |  |  |  |
|                        | Apodization:                                                                                  | Cosine             |  |  |  |  |  |
|                        | The measurement was done 3 times on above conditions.                                         |                    |  |  |  |  |  |

#### Results

Table 1 shows the results of secondary structures of 5 proteins. The repetitive reproducibility was considered to be quite good, however, there was little difference from the data using X-ray. It can be explained as this distinction was occurred from the difference of conditions between crystal and solution, and that of measured proteins (including purity and bioracial tissues). Therefore, this program is sufficiently applicable to the analyses of the secondary structure of proteins.

| @#7-         | et a             |               | 2       | MEN:57-3   | -                   |
|--------------|------------------|---------------|---------|------------|---------------------|
| TRAL         | PCR 3            | 1             |         | 林正治のデータ    |                     |
| Files        | 10.4 NO.4        | 11777104N     | -       | 7 amb -    |                     |
| F .8 81      | U.S.B.           |               |         | P #-Dair - |                     |
| P            | SHORE            |               |         | P & then   |                     |
| F            |                  |               |         | Ø Ofer     |                     |
| P 18         | ar 42 for 52 mil | na 1-20 1-2   | 48      | P =# ···   | Weendale-2          |
| P ROBELCERES |                  |               |         | HR -       |                     |
| Prin In      | -1434 [ A-2      | hear 1 d-Turs | 1 Cflar | [222       | a +1 /1 / 1 + 1     |
| 1000 7       | 8 185            | 134           | 245     |            | Catin               |
| 25KCyr. 42   | 8 136            | 328           | 228     |            |                     |
| 190ys, 37    | 8 176            | 228           | 248     |            | the two two the tra |
| 2940.0       | 476              | 26            | 278     |            | Wanned alter 1      |
| 5%g01. (A    | 425              | 346           | 288     |            | 6/E                 |
| 55401. 1s    | - 69             | 245           | 268     |            | and in              |
| 550,es. 37   | 5 145            | 245           | 255     |            | a and the           |
| Contract of  | 145              | 294           | 268     |            | 100 100 100 100 100 |

Fig. 1 Screen of IR-SSE



|          |        | First | Second | Third | Avarage | Relative Standard<br>Deviation | X-rays |
|----------|--------|-------|--------|-------|---------|--------------------------------|--------|
| Lysozyme | αHelix | 37    | 38     | 40    | 38      | 1.3                            | 36.0   |
|          | βSheet | 18    | 18     | 17    | 18      | 0.2                            | 10.0   |
|          | βTurn  | 28    | 28     | 27    | 28      | 0.9                            | 36.0   |
|          | Other  | 28    | 28     | 27    | 27      | 0.5                            | 19.0   |
| Ig-G     | αHelix | 7     | 12     | 10    | 10      | 2.5                            | 3.0    |
|          | βSheet | 45    | 42     | 45    | 44      | 2                              | 67.0   |
|          | βTurn  | 24    | 24     | 21    | 23      | 1.7                            | 18.0   |
|          | Other  | 24    | 25     | 23    | 24      | 0.9                            | 12.0   |
| Cyt-C    | αHelix | 38    | 40     | 42    | 40      | 2.1                            | 42.0   |
|          | βSheet | 19    | 16     | 15    | 16      | 2.5                            | 2.0    |
|          | βTurn  | 24    | 23     | 21    | 23      | 1.2                            | 22.0   |
|          | Other  | 23    | 22     | 21    | 22      | 1.1                            | 34.0   |
| OVA      | αHelix | 27    | 28     | 24    | 26      | 1.9                            | N.D.   |
|          | βSheet | 32    | 31     | 32    | 32      | 0.5                            | N.D.   |
|          | βTurn  | 28    | 28     | 27    | 28      | 0.6                            | N.D.   |
|          | Other  | 29    | 29     | 28    | 29      | 0.8                            | N.D.   |
| Pepsine  | αHelix | 15    | 15     | 16    | 15      | 0.5                            | N.D.   |
|          | βSheet | 28    | 28     | 27    | 28      | 0.6                            | N.D.   |
|          | βTurn  | 23    | 22     | 21    | 22      | 1.5                            | N.D.   |
|          | Other  | 24    | 22     | 21    | 22      | 1.6                            | N.D.   |

Table 1 The comparison of reproducibility with the analysis of FT/IR and X-ray (values of reference)

The unit is %. N.D. means no data.

## Reference

1) Ronald W. Sarver et al., Analytical Biochemistry 194, 89-100 (1991)