Optical rotation measurement of sucrose and l-menthol

Introduction

Optical rotation is the property of substances, rotating the plane of polarization when linearly-polarized light passes through such substances. This is the property which occurs specifically to optical active substances in which the refractive indices of right and left circularly-polarized light are different. Optical rotation that rotate light in a clockwise direction as viewed towards the light source is defined as dextrorotation $(+)$ and the opposite, levorotation (-).

The angle of rotated plane of polarization is called as optical rotation and polarimeter is the instrument to measure such optical rotation. Optical rotation is proportional to cell pathlength and is related to sample concentration, measurement wavelength and temperature. The specific optical rotation $[\alpha]_{\mathrm{x}}^{\mathrm{t}}$ is calculated from the following formula using temperature $t\left({ }^{\circ} \mathrm{C}\right)$, wavelength $x(\mathrm{~nm})$, cell pathlength $1(\mathrm{dm})$, sample concentration $c(\mathrm{~g} / 100 \mathrm{ml})$ and measured optical rotation α.
$[\alpha]_{\mathrm{x}}^{\mathrm{t}}=100 \alpha / c l$
JP, USP and EP suggest to measure optical rotation using D-line of Na lamp.
Polarimeter is used for several purposes such as purity certification of sugar, verification of pharmaceuticals and optical purity determination of optical active substances obtained from asymmetric synthesis in organic chemistry field.
Keywords: Optical rotation measurement, sucrose, menthol, ORD

Optical rotation measurement of sucrose

$5 \mathrm{~g} / 100 \mathrm{ml}$ of sucrose (Wako Pure Chemical Industries, Ltd., JIS special grade) was prepared and measured using P-2000 with 100 mm cell, Na lamp D-line under $20^{\circ} \mathrm{C}$.

Figure 1 shows the printout view of measurement result. The average of optical rotation in 5 times measurement was +3.3264 deg. and its specific optical rotation calculated was +66.5280 which is in good agreement with the specific optical rotation of $5 \mathrm{~g} / 100 \mathrm{ml}$ sucrose solution described in JIS K0063 1) , +66.500.

Figure 1 Printout view of optical rotation measurement of $5 \mathrm{~g} / 100 \mathrm{ml}$ sucrose solution.

Optical rotation measurement of 1-menthol

1-menthol (Wako Pure Chemical Industries, Ltd.) was prepared under the condition suggested in JP (2.5 g ethanol (95), $25 \mathrm{ml}, 100 \mathrm{~mm}$) and its optical rotation was measured. Its specific optical rotation was calculated to be $[\alpha]^{20}{ }_{D}=-50.01$ which is well within the JP criteria: $-45.0 \sim-51.0$.

Generally, optical rotation is increased in shorter wavelength region. For optical rotation measurement, Na lamp D-line is usually applied, while when the optical rotation of the sample is very small using D-line, by irradiating shorter wavelength light, optical rotation can be measured in easier way. In this application data, optical rotation measured using P-2000 with both Na lamp D-line and Hg lamp emission line wavelength ($546,436,405,365 \mathrm{~nm}$) and ORD spectrum (showing wavelength dispersion of optical rotation) measured using J-820 + ORDM-401 were compared. As shown in Figure 2, both measured values by P-2000 and ORDM-401 are very consistent. Like this, by employing shorter wavelength light for samples with small optical rotation, the measurement can be implemented easily.

Figure 2 Optical rotation of 1-menthol and comparison with ORD spectrum
O: P-2000 measured value - : ORD spectrum

Reference

(1) Optical rotation of sucrose solution described in JIS K0063 is referred to Handbook of Chemistry and Physics, $42^{\text {nd }}$ Edition (1960-1961), P1784, The Chemical Rubber Co., Ohio, U.S.A..

